Systems and Computers in Japan, Vol. 24, No. 10, 1993

Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J75-D-I , No. 11, November 1992, pp. 1025-1036

Design and Implementation of the C// Language for Closely
Coupled Parallel Computers That Control Distributed
Processes by Demand/Accept Mechanism

Masaki Tomisawa, Member, Hitoshi Tamura, Hiroshi Hoshino, Nonmembers,
Satoshi Igarashi, Oichi Atoda and Nobuo Saito, Members

Faculty of Technology, Tokyo University of Agriculture and Technology, Konganei, Japan 184

SUMMARY

Design and implementation of the parallel program-
ming language C// is discussed. C// is so designed as to
give straightforward programs to shared memory
parallel computers equipped with a distributed
"demand/accept” control mechanism previously pro-
posed by the authors, while offering moderate abstrac-
tion and descriptive power as a complete programming
language as well as friendliness to programmers. The
language itself is made as light as possible for easy
implementation. A function of the language C is inter-
preted as a parallel grain in C//, introducing the
"advance call" as the only parallel fork method. New
concepts of multiplicity and sharedness are added to
value and address passing in sequential case. Eight
parallel primitives are defined for manipulating control
advance flow as well as data passing. The structure of
a C// program consists basically of nested advance calls
spreading in both width and depth. A program is
written on the basis of logical parallelism without
specification of processor element usage. Logical
"function instances” are distrubuted to physical
processor elements at runtime and executed as native
processes that the control mechanism manages. The
optimal scheduling strategy is left open. The language
is empirically evaluated through a picture analysis

program.

Key words: (/ parallel programming language,
shared-memory parallel computing, distributed
"demand-accept” control mechanism.

15

1. Introduction

From the point of view of machine as well as appli-
cation of parallel computers, it can be said that SIMD
computers have been quite successful in pracitcal use.
On the other hand, many independent parallel pro-
gramming languages [2] have failed to bring MIMD
parallel computers [1] into practical use. By nature,
the role of a programming language is to overcome the
gap between machine architecture and user applica-
tions. Introduction of machine oriented, though not
machine dependent, parallel programming languages
[3, 4, 5] and language oriented parallel architectures [6,
7, 8] is essential for mediation between MIMD ma-
chines and actual application programs. Transputer [9]
is one of the few successful examples in this viewpoint.

A programming language for this purpose should be
so designed as to properly abstract the resources and
operations of target machines, to give efficient machine
codes, and to be compiled with no difficulty. On the
other hand, in view of the original role of a program-
ming language, it should offer proper programming pa-
radigm and good programmers’ interface.

In this paper we present C//, a parallel program-
ming language appropriate for MIMD computers
whose architecture, which was proposed by the authors
before, is characterized by a demand/accept control
mechanism [10] built into all processor elements
distributely. Expression of parallelism in C// pre-
supposes dynamic generation and extinction of pro-
esses done by that control mechanism. Linguistic mod-

ISSNO882-1666/93/0010-0015
© 1994 Scripta Technica, Inc.

eling of control flow or synchronization in C// is not
novel and can be easily learned.

Differnent from the C-thread in Mach operating
system [11], parallel primitives of C// are not system
library functions. The operations of the demand/accept
control mechanism are abstracted as native operators
within language syntax as well as jump-to-subroutine in
a serial machine is abstracted as the function call
syntax of C. This comes from the basic concept of C//
to support machine oriented context of user programs.
Though the conceptual bases are differnet, C// and C-
thread share comparable features concerning dyna-
mically generated processes (the term does not mean
Mach proceses here).

CJ/ functions are executed directly in parallel
without the vehicle jof threads. In Mach, a thread
generated by cthread_fork() need not be joined by
cthread_join(). Instead, it may be thrown away by
cthread_detach(). In C//, a called function instance is
subject to the caller context and need be joined at the
reception operator // attended with a return value
(including void). This is appropiate for the distributed
strategy of mutual process control by demand/accept
mechanism. Whenever a C// function is invoked in
parallel with the caller, a function instance is generated
and is bound to a transfer variable explicitly. The
actual content of a transfre variable is an internal
identifier of the function instance which is hidden from
the program contest because it is hardware dependent.
Instead, the declared name of a transfer variable serves
as the temporal name of a function instance indepen-
dent of the function name and makes the programmer
conscious of that function instance. There is no
syntactic distinction among a quasi-SIMD program in
which many function instances with different
parameters are made from a function, a recursive
program in which function instances are diffusively
created, and a program in functional distribution in
which many different functions generate small number
of function instances for each. Only three essential
function call primitives respond to a wide range of
parallel program structures, which, not a variety jof
separate primitives, makes C// a general purpose
parallel programming language. Similarly in C// in only
one lock-statement is used in place of the class of
mutex_try_lock(), etc.

In this paper we do not mean to propose a pro-
gramming language based on a new theoretical parallel
model. The purpose of this paper is to show a design
of practical parallel programming language which
makes MIMD computers with demand/accept control
mechanism widely usable.

16

2. Machine Architecture and Application
Programs

A closely coupled MIMD parallel computer having
the following features is assumed in this paper.

(i) Processes are distributively created and deleted
by the efficient control mechanism built into each
processor element which is manipulated through
machine level instructions. Each processor element
executes a number of processes concurrently. The
control mechanism is responsible for context switching
among concurrent processes and for prevention of
processor starvation. The environment of a process is
a heap allocated by the control mechanism within the
home memory of the processor element. The control
mechanism operates roughly as follows. Mnemonic
codes of the instructions are represented by capital
letters. A certain process executes DEMAND instruc-
tion with data pointer grain from a target processor
element. By DEMAND instruction, the control
mechanism of demandant processor element fills slots
of a data structure named recipient in the instance
control block within the home memory of that
processor element and puts the recipient address into
the queue of the target processor element. The control
mechanism of the target processor allocates a new
heap and creates a process in demand. When the
created process executes DELIVER instruction, the
heap is released and the process is deleted. Returned
data may be delivered to the environment of the
demandant process before DELIVER instruction,
ACCEPT instruction of the demandant invalidates the
recipient if the target has DELIVERed. If not, if waits
switch-spinning until it has done so. Consequently, the
demandant process can accept the delivered data after
ACCEPT instruction. Instructions for selection of an
arbitrary process among processes having DELIVERed
and forced termination of a process are also imple-
mented in the demand/accept control mechanism.
Parallel control instructions for the mechanism, which
are presented in [12] and revised afterwards, are listed
in Table 1. Owing to these instructions, the parallel
computer executes a parallel program autonomously
without the aid of an operating system.

(ii) Address space is logically linear and uniform, all
of which is shared by all processors. Physically,
memory space is divided into as many blocks as pro-
cessors, each of which is called a home memory and
mounted on a circuit board with a processor chip and
an arbitration circuit to form a processor element. A
processor element can access its own home memory at
the lowest cost. It takes 1.2 to 5 times longer time,

Table 1

Instruction [nput operand Output operand Function
DMND Start address and parameter Recipient address Demand (parallel call)
address
ACPT Recipient address Parameter address | Acceptance (with switching)
DLVR Delivery (return of demand)
SLCT First recipient address in queue Element number OR-type selection of reception
and number of clements point for delivery (with swilching)
RTCT Recipient address Cancellation of demand
SETR Sequential registration of domain boundaries
RMVR Sequential demand cancellation in domains
TASS First address of test and set data Atomic test and set of all elements in queue
address queue and number of cle- and swilch spinning
ments
AOF Immediale mash comparison value Freeze, exception (for debugging)

which may not be uniform and may be affected by bus
confliction, for a processor to access a home memory
in another processor element through the bus
interconnection network.

(iii) The number of processor elements, physical bus
scheme, bus interconnection geometry, sequential in-
struction set, presence of cache memory and so on are
not prescribed.

Structures of application programs that the parallel
computer is assumed to execute are as follows.

(A) A program which divides a set of large uniform
data such as pixels into many subparts at a time and
processes them in parallel. In some cases SIMD
computers can be used for this purpose, but, in other
cases in which respective subcontexts in parallel take
different branch conditions or different processing
status, MIMD computers are appropiate. In picture
processing examples, convoluting a filter grid by grid is
for the former, and tracing edges polyhedron by
polyhedron in various shapes is for the latter.

(B) A program in which state transitions take place
and the context forks into as many subcontexts as
states reachable from the present state. In general, the
subcontexts fork repeatedly, in many cases recursively,
to become tree-structured. Breadth first exploration of
a search tree is a common example.

(C) A program in which respective subparts in pa-
rallel work differently.

In (A) and (B) among the above, high degree of
parallelism can be attained with a small amount of

17

program description. For (C), we have not encoun-
countered highly parallel practical problems, but the
nested structure of (C) in large problems jsuch as
structural pattern recognition and so on may produce
good parallelism as a whole. Compound structures of
(A), (B) and (C) are possible.

3. Criteria and Method of Language
Design

3.1. Requirements for language

Regarding language design, there are many require-
ments for target processor, compiler, programmer, elc.
The following are considered.

First, a processor element that executes a part of
the parallel program must be explicitly demended for
its process creation. The compiler must generate ex-
ecutable codes on the basis of explicit DEMAND
instruction. That is, the following is necessary.

Model. That a process will be created must be
known before the process is created. In short, control-
driven code is obtained.

For efficient execution of the code, the following
two are required.

Local Access. Import or export of data should be
done at the time of creation or extinction of a process
as parameters or return values. Locked reference to
data of other process which is possibly in the home
memory of other processor element should be infre-
quent.

Optimal scheduling. Optimal assignment of
processes to processor elements is obtained which may
significantly affect the total execution time.

To write a compiler of the language easily, the
following is required.

Semantic resemblance. Data model and control
flow model of the language should not be too far apart
from the memory model and control model of the
hardware for the compiler to absorb the semantic gap
between them.

The following is desired for both easy compilation
and runtime efficiency.

Code simplicity. Code should be as light as
possible without heavy buried macros or system calls.
Codes with many dynamic checks of type or area
should be avoided. Implicit allocation or release of a
heap aside from those done by demand/accept control
mechanism may degrade execution speed seriously.

In general, the requirements from a programmer
are the following two items.

Simple programming. Easily learnable syntax, flu-
ent coding without error, effortless debugging and so
on are desired by every programmer.

Descriptive power. The wide range of program-
mer's thought must be expressed by language primitives
without unnatural or detoured tricks. However, above
two often conflict when a number of various primitives
are introduced in favor of the latter.

Finally, a programming language must have the
following features in the least.

Completeness. A programming language must be
complete under the paradigm which it is going to offer
even if it is a machine-oriented one.

Portability. A programming language must cope
with hardware variation. In our case, the number of
processor elements and interconnection geometry may
vary from machine to machine.

3.2. Establishment of design criteria

For each requirement, the criteria for trade-offs are
established as follows,

(I) To attain both semantic resemblance and simple
programming in order for a programmer to program

plainly making an effective use of demand/ accept
control straightforwardly.

(IT) To support applications in the range of (A) to
(C) sufficiently, but not to expand faculty in prepara-
tion for unexpected usage. Simple programming and
descriptive power are balanced at this point, keeping
the language model and specifications as plain as possi-
ble.

(IIT) While making the language machine-oriented
in the sense that is assumes the demand/accept control
mechanism and the linear shared address space, to
release it from the constraints of individual machines
such as different processor element numbers or bus
geometries. Portability is attained thus among paral-
lel computers equipped with that control mechanism.
Since optimal scheduling depends on the physical
schemes and parameters of individual computers, it
should be left outside the language syntax or semantics.

(IV) To make implementation of the language pro-
cessor easy while satisfying (II) and (III). Code
simplicity is regarded especially important.

(V) To borrow conventional programming language
syntax as a subject and to make a smoothly continuing
extension for parallel description, which contributes to
simple programming since only the extended part of
syntax must be learned by a programmer. In addition,
completeness should be considered for the extended
part only. This reduces the design effort to a large
extent, and improves the implementability.

3.3. Design of the language structure

According to the trade-offs made in 3.2, a model of
the language is determined first. Based on Criterion
(1), a call type procedural parallel language is the most
appropiate. Namely, a process is created when and
only when a subprocedure is called and control is given
to it explicitly, which satisfies the model. However,
from (III), parallel description is made not subject to
physical processor elements but on the basis of logical
processes. Thus we have decided that the first machine
oriented language for parallel computers with demand/
accept control be procedural language which abstracts
the process creation on a logical level as invocation of
subprocedure or C-like function. Here, as the first
language of the demand/accept type computer, such a
procedural call type language is assumed, and various
criteria are satisfied within this framework.

A subprocedure might be called many times in
parallel to take charge of respective parts of data in an

Table 2. C// parallel primitive series

Series Paralle] function Name C/f primitive
/l = operalor
Both series Fstablishing control Audvance call
lransfer variable
Passing by value (C)
Data multiphaty
Automatic vanable (C)
OR-type control selection Among statement
Passi I
assing by value Return (C)
relurn serics
Synchronous termination of control Receive I aperator
Cancel ! operator
Return value (C)
Cancellation of data multiplicity
Delayed substitution $ operator
Sharing Passing by reference ()

Passing by reference
pointer senes

Sharcd variable reference

Pointer reference €y

Lock statement

Lok
Keyhale variable

Multiple representation

Struct ()

Note: (C) indicates use of corresponding C function

application of type (A). In (B), a subprocedure might
be called in which reachable states are sought and
which calls itself recursively as many times as the num-
ber or reachable states in parallel, giving data for
respective states. Various subprocedures which work
differently might be called at the same time in (C).
Thus the difference of program structure between (A)
and (B) is simply the depth of nested calls. (A) and
(B) are different from (C) in that they call the same
subprocedure many times simultaneously instead of
many different subprocedures at a time. Then only
one way of procedural fork, which is to call a sub-
procedure, will work for (A), (B) and (C) satisfying
descriptive power in (II) if the condition below is met.

(1) A subprocedure call including recursive one can
be expressed in the same syntax irrespective or multi-
plicity or depth.

There are search problems of type (B) which come
to an end when at least one solution is found.
Nondeterministic selection of a process which has been
completed among specified callee processes is required
to maintain descriptive power against those problems.
Explicit expression of forced deletion of a callee
process is also required. Another case is when nonde-
terministic selection plays its role to compose a
program structure in which the main procedure decides
what to call next whenever a subprocedure finishes.
Anyhow, besides deterministic expression of procedural
join, nondeterministic selection is inevitable in de-
scribing the parallel control flow.

19

Interaction of processes without fork or join of
control flow can be done through a shared variable.
For example, in a breadth first search program of type
(B), branches are bound by competitive searching of a
optimum value shared by all processes. In accessing a
shared variable, mutual exclusion is of course indi-
spensable. However, more complicated exclusion or
synchronization is seldom encountered in applications
of type (A) or (B). Even if complicated ones are
needed, it is well known that they could be composed
of the simplest exclusion logic. Thus a primitive for
atomic lock sufficiently satisfies descriptive power.
Composition of sophisticated synchronization and
prevention of deadlock which are left to programmers
will not degrade simple programming seriously if they
do not appear too often.

The language leaves explicit description of control
flow to the programmer’s hand. There arise questions
as to whether or not a programmer can manage the
parallel control flow easily and whether or not a
programmer can make up a parallel program structure
without excessive effort. If these are not easily
available simple programming in (I) and (II) cannot be
satisfied. However, these are problems unique to
parallel programming, and there are many open
problems due to the lack of cumulative experiences.
Our language copes with the former question by the
following strategy.

(2) Control is made not to fork unless the control
of a subprocedure is given an explicit name at the
head, by the aid of which a programmer is able to seize

the corresponding tail of the control definitely. The
name is declared like a variable before it is given to a
control, which gives a chance for some static check.

For the latter, control flow is so organized that the
classical program structuring method may be intro-
duced extensively to parallel programming.

(3) Control that have forked away from a control
must always join into that trunk unless it is terminated
by force. The language syntax and semantics forbid
detachment. Namely, only nested context is allowed.

Above are the basic strategies in designing the
language. Some supplemental discussions are given
below. The structure in (2) and (3) does not support
programming models in which control is implicity
bound to a variable when its value is referred to or
when it can be evaluated. A finite number of callee
processes can exist for a callee processes can exist for
a caller process at once, which is not appropiate for the
program model which requires theoretically infinite
processes at once. Were it to meet requirements
different strategies other than a call type procedural
language would have been used from the beginning. In
case of applications from (A) to (C), descriptive power
is not too small since a finite number of data parts or
reachable states are known before the call of
subprocedures. Such a structure is rather favorable to
(IV) since conventional compiling technique is applic-
able.

The control flow structure in (3) does not allow
process creation by a process on the same nesting level
as itself and direct data passing to a new process, which
may be suitable for certain applications of type (A)
when processings are done step buy step depending on
the results of respective steps. Simple detection of an
error in intermediate results could be written in this
structure. In this case, direct transfer is not necessary
a common caller which inspects the result of the
foregoing process and indirectly call the following
process depending on it is sufficient. Thus descriptive
power is not affected seriously.

It is not so difficult to extend a conventional serial
language which permits recursive calls to create a
parallel programming language structure having
features (1), (2) and (3). If we choose language C as
the base, it is natural to adopt a function in place of a
subprocedure and to create a new process when a
function is called. The only thing to do is to introduce
a way to express giving multiple controls to a function
or giving controls to multiple functions simultaneously.
Especially C is favourable to semantic resemblance

20

/lfu‘,]l_'ﬂl function

description of a function
/ /

function instances 4+—internal static variable

automatic variable—
o 5 _phyvsical mapping
qunrlmn code T b
f-~ e 3
24 : -
func() villgl) func() ¥
. r \,\ - .i L
£ | x \ z /1 x
ur,.‘ NO| aisl
b
P =T —
‘[/ : - / -
17 home area NG S home area -

I z s
heaps for N SN / N
function :
nstances

“elone
functions

|\I aCesSsSor
element

processor
element

Fig. 1. Clone of function codes and function instances

distributed to home memories of respective processor

elements for mixed execution of concurrent and paral-
lel ones.

since it processes machine-oriented descriptions. Thus
we decided that our language is to be designed as a
continuous superset of C. Compatibiltiy of system
libraries functions out of the language syntex is not
considered.

Giving the concept of scop to variables and
accelerating the use of automatic variables as well as
value passing reinforce access locality, increasing the
chance of access to the home memory. However, it is
very difficult to determine optimal assignment of
processes which deal with nonlocal data in (A) and (B)
and home memories considering not only load balanc-
ing of processor elements but also nonuniformity of
access time or bus competition (conflict). Satisfying
optimal scheduling automatically [13] is an open
problem. If the location of a created process were to
be specified in a program context by a human pro-
grammer, portability would be lost since the program
would be dependent on hardware geometry. Our
strategy is to leave this problem out of the design of
language. Even if the spatial scheduling is nonoptimal,
it is optimal for implementing parallel computers
sooner.

There are some applications in (B) in which copies
of large dat sets like prolog global stack must be
passed from a state to many successive states because
the data may be modified differently from state to
state. Speed improvement of those programs is out of
the scope of the language, and is left for programming
sophistication or special purpose architecture [14].

4. Specification Design
4.1. Parallel grains

Language specifications are given so as to satisfy
completeness while realizing the discussions given in 3.

As discussed, a subprocedure is to be expressed as
C-like "function,” which is essentially a procedure. In
this language, a function call is the only way to fork
control. A function call is a procedural call and a
logically existing state as a process is referred to as a
function instance. Of course there can be many func-
tion instances of a function simultaneously. Environ-
ment of a function instance is not a stack but a heap
which the demand/accept control mechanism offers.

Function instance is a logical concept. Whether
function instances are executed concurrently or in
parallel physically is not questioned. This satisfies
(III). In applications (A) and (B), many function
instances of one function are made. In order for them
to be executed really in parallel, not concurrently,
copies of the function code are distributed to home
memories of respective processor elements. Those
copies of a function code are called clone functions. A
clone function is a physical concept which is not in-
cluded in the language syntax.

4.2. Multiplicity and sharedness of variables

In extending a serial language into a parallel one,
new different concepts are added respectively to value
passing and address passing. A variable passed by
value to multiple function instances becomes
independent function instance by function instance.
Like automatic variables, they do not interfere with
each other. On the other hand, a variable whose
pointer is passed to multiple function instances is
naturally shared by those function instances since the
body which is pointed by respective pointers is only
one. Thus the right to share the variable is virtually
given when the address is passed.

4.3. Systematization of primitives

Starting from the function call, data passed by
value and by address behave differently with the
control of that function instance. Parallel primitives
are com-posed into the above said two groups for the
life of function instance. They are listed in Table 2.
We refer to the language obtained by adding the syntax
for primitives listed in Table 2 to lanaguage as C//.

Amainl)

home memory of
some Pk
or all PEs

PE1l home PE? home PEY home
memory memory memaory

kaf () IS ,
&b () . Fy ! . !
Aei) . | . il
Adi () . 1 . | ol | .
PEL & F 4 main() F all) " F | at ()
I'E1 |

PE? ¢ N laity - be() F et ()
i3 , daf ()
I'E? ¢ [larld
PEd ¢}
kL e b
PEI

Fig. 2. Address acquisition table common to advance
call and sequential call. Offset of the table entry
serves as the pointer of corresponding function. Ar-
rows in the leftmost table are the conceptual Illustra-
tion of the scheduling among clone functions.

Primitives in the value-passing group are related to
the synchronization at the termination of control of a
function instance as well as the return of a value from
it. Those in the address-passing group are concerned
with mutual exclusion or synchronization needed in
variable sharing without extinction of a function in-
stance.

The atomic lock-statement in the latter group
covers a diversity of synchronization or exclusion logic.
The among-statement in the former group supports
nondeterministic or OR type synchronization in re-
ceiving a returned value from called function instances.
A primitive for AND type synchronization is no needed
because simple successive of reception of returned
value by the // operator acts equivalently. Arbitrary
combinational logic in reception or mixed synchroni-
zation logic of both groups is not supported since they
are hardly needed and can be replaced by sophisticated
programming, although completeness might be a little
violated.

For functions, explicit template/instance expression
is introduced into C//. For data, C// inherits the tem-
plate/instance concept of the struct from C. Thus C//
contains this concept for both control and data. How-
ever, a compound template of both data and proce-
dure, that is, object-oriented abstract data type is not
included in C//. It is not difficult essentially to intro-
duce C++ type object expression as a successor of C//.

4.4. Expression of control parallelism

Methods of description of function call must be
compatible with the language structures of the above

/* Son Goku's Kxcursion Through a lLabyrinth */

/* N, M and a maze pattern such as */
f* int MAZEIN] IM] ={ *f
(e 1,0,0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0,0,0, */
f* ',1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0, nf
ik [P I T N O Y N (N N OE 0 O T B, S TA o
e 265 b
/* are assumed to be defined external ly. ¥
fdefine WALL 0
fdeline ROAD |
fdefine GOAL 2
Fdefine EXPLORED 3
Idofine DEAD END &
keyhole k[N] M| ;
int explore(int, int), enter maze(void);
int enter maze(void)
{ HAZEIO] [O] = EXPLORED;
return {explore (0,0) = GOAL) ;
)
int explore(int x, int y)
(int i, ., xx, yy. ans, vI[3, vasknl3l. //fraskl3],
velal={1,-1,0,0}, vylal-{0,0,1,-1);:
for(i i Ny i< by)|
X% xivx|vly yy - yoeylil;
IT{xx>-0 K& xx<N K& yy>-0 &K yy<M)
POMAZE [xx | [yy] == GOAL){
MAZEIx] Ty] = GOAL;
return GOAL S
boetse lock ke lxx) lyyls klxx] lyy])
P IMAZE [xx] |yy] == ROAD){
HAZE [xx) lyy]l = EXPLORED:
viljee] = iy
)
)
if{ji == 0) ans = DEAD END:
clse if(j == 1)} ans = oxplore(xsvx|v[0]], yevylv[0]]);:
elsef
for(i=0; i<j; 1+4)
task il //= explore(xevxlvlill, yevylvlill)s:
taskn|0] = 0, tasknll] = 1, tasknl?2] = 2:
for(i = j-=1; i >= 0 && ans '= GOAL; i--){
among(j: | <= i; task|tasknljl]);
ans = {/rask|vaskn|jl];

task |[tasknl jl| task|tasknlil];
}

tordj = D3 j € i o) /' vask[tasknlill:
)

itflans == GOAL) MAZE (x| |yl

return ans;g

= GOAL:

Fig. 3. An example of recursive program (maze excur-
sion).

(1), (2) and (3). In C// a function call is expressed in
the following form called "advance call."

t // = func(x); /* calling *

/* a function ¥/

/* receiving */
[*returned value */

y = /ft;

Mixed use of C compatible "sequential calls" with
advance calls is allowed. The type of a call is
distinguished only by the calling expression and there
is no distinction in the called function. The environ-
ment of a sequentially called function is not a ncw

22

heap but a conventional frame in the caller’s stack in
the old heap. A sequential call is good for compati-
bility and memory economy, but not for completeness.

The literal t in the above expressions is called a
“transfer variable" A transfer variable is a quasi-
variable to which not a value but a conceptual control
of a function instance is assigned by the operator "//=".
Practically, it acts as the unique temporal name of the
corresponding function instance. The operator "//"
removes the control from the transfer variable and the
corresponding function instance vanishes since direct
assignment of a control without the //= operator or
double assignment of controls to a transfer variable is
not allowed and no function instance without its
control held in any transfer variable can exist. The
expression "//transfer variable" bears a numerical value
and type equal to the returned value and type of the
function instance. Evaluation of this expression is
referred to as "reception” or "receive”, and the
execution of return statement of the side of called
function instance is referred to as "return."

The name of the transfer variable is declared with
the type of a returned value from the function instance
as "float //t" and so on. The scope of transfer variable
is limited to being automatic.

When an operator // is encountered, return of the
function instance corresponding to the operand is
made to wait implicitly unless it has already been
returned. Switch-spinning at this time is the job for the
demand/accept control mechanism invisible form the
program. logically, a return value is always obtained
by the // operator if and only if the operand transfer
variable contains control of a function instance. On
the other hand, the "/!" operator deprives the operand
transfer variable of its control and the corresponding
function instance is forcibly erased.

It becomes immediately clear that the advance call
syntax satisfies (1) from examples such as

floal x,v ;
float f(float),z, /s, g(float),u, /t;

s/ =f(x);
t# =gly);
Z=8;

u—4#1;
or
int k.x[M].f(int), v[M], 7t[M];
for{lk=0:k<M:k++)t[k]7 =1(x[k] ;
for(k=0; k<M :k+ +) v[k]= 7t[k];

4.5. Nondeterministic selection of control

The primitive for nondeterministic selection of
func-tion instances is the among-statement in which
transfer variables are used to specify the corresponding
function instances. Among-statement is written as

among(j;j<=1;j==02s:t):

or
among(j ;1< M ;t[j]):

where the first expression j in the parentheses is an
integer or character type scanned one by one from zero
until the value of the second expression becomes false
or zero. The third expression specifies not a value but
a control of the function instance for the respective
value of j. Among those function instances that have
been enumerated during the scan, one which has
already returned is selected and the value of j is
assigned. If none has returned, implicit synchroni-
zation occurs to wait for the earliest to return. Thus
the earliest receivable function instance is selected
through among-statement.

4.6. Mutual exclusion

The only primitive for mutual exclusion and syn-
chronization independent of call, return or reception is
lock-statement. In lock-statement as

lock(g ; h)f{-+}

g is locked just before the block in braces is entered
and h is unlocked just after that block is exited.
Variables g and h are "keyhole" type variables which
follow the same scope rule as variables of other types.
When a number of function instances access a shared
variable x exclusively, mutual exclusion could be
described with the aid of keyhole variable k in the
same scope as X as
lock(* pk : ®*pk) *px=--;

where pk and px carry &k and &k that might have
been passed as arguments to function instances.
Generally, the scope of a keyhole variable for this
purpose should coincide with that of the shared
variable. It might be very convenient to treat the

keyhole variable in a stucture same as that of the
shared variable.

Synchronous data passing from a callee to its caller
is written using two keyhole variables g and h as

23

aIlIII.IIIIII.IIIII....I
aaa.ccc.ccclll L n
EMlaccBcccBlce | &1 | l | I |
Ilb.l.l.l.lclll-dl HEE
BHoMbbbbbbMclBddddluE HEE
ELEE-ENEEEE N GEEE.E B B
MooboMf feeecddMuuvuuil W W
AEENER N:ONENER EEEE B .
B cuigiloazcecn | B
B ¢ HOBMOo ggagw

MiMhhhhppeHENoENEEYE "N
EEEEEEE BN EoENEEvE B EEE
Bssss:sB kkkMolwwwE B EH B
E-EEE:-N EEEEcEEEEN - EEE B
EEEgonmsnnonnnpMr o @ |]
Illﬂll.illlIlDlrIlIIIl u
W m ‘.U.(.Y‘Y?‘ []
AEEEEEEEE B Eo EyEEERER
u H B0 EEEN |
H =EEEEER .x.l‘v‘v. | 1]]]
u .xxx‘l | []
=Il EEEER III== - III=
5 P O T O D O 5 O O D O

1IN) GOAL

Fig. 4. Result of fig. 3 observed by adding printf() to
the program.

/* caller side */
lock (g:h) y =
/* callee side */
lock (*pg; *ph) *pu = x

where pg, ph and pu contain the addresses of g, h and
u respectively. It is assumed that g is locked and h is
unlocked initially.

The well-known classical principle of composing
general synchronization logic using private semaphore
and global semaphore is also applicable in the lock-
statement complex. In this cas private keyhole and
global keyhole do not necessarily correspond to the
linguistic scope.

A programming technique has been developed to
encapsulate arbitrary synchronization logic ito a set of
a struct containing all the keyhole variables required
and functions which minipulate them through lock-
statements. This set acts like a class of the object-
oriented case, and an instance of which behaves like a
classical monitor.

To restrict the time when x is exposed to a side
effect of executing a function instance to receiving time
only, delayed assignment operator "$" is made avail-
able. In an advance call, if an argument is passed in
the form as

=func(x $);

then x is passed by value once but change of x in
func() is returned in synchronization with //t. The
"variable folding" operation by delayed assignment
could be regarded as the inverse operation of value
passing by which a variable gains multiplicity.

4.7. Compatibility problems

In extending sequential language C to a parallel
one, a few semantic mismatches reveal themselves in
relation to the multiplicity of clone functions. The role
of a function pointer, which does not lose its usefulness
in C//, must be revised. It will be done in the next
chapter.

An internal static variable has been thought in
principle to belong to the function code, although some
of today’s compilers treat it differently. If there existed
multiple internal static variables of the same name
together with respective clone members which are
invisible from the program consistency would not be
maintained. An internal static variable must not be
cloned in a way to an automatic variable which is
shaped by all instances. It must be shared by all
cloned members, and consequently by all function
instances. Then the references to an internal static
variable are mutually excluded using a keyhole variable
in the internal static scope unless it is a read-only
constant.

On the code level, the internal static area might be
taken along with arbitrary one of cloned function mem-
bers, and it might be accessed by absolute addressing
mode, which is consistent with code copying.

Internal static variables are not so useful in parallel
case as in C. The depth count of recursive calls does
not correspond to the history of the function code.
Data independent of the life of function instances
should be secured not as code but as external struct
since the latter can exist as an external structure.

5. Language to Machine Correspondence

C// programs do not describe the usage of pro-
cessor elements. Programs are devised on the basis of
logical parallelism. Since the function instances can be
executed both concurrently or in parallel, a processor
element may undertake several function instances at
runtime if logical parallelism exceeds the number of
physical processor elements. The cloned functions are
distributed statically to multiple processor elements.

24

Thus there arises multiple correspondences among
function codes, processor elements, and function
instances as shown schematically in Fig. 1.

A function instance can execute the code functions,
of which one is selected properly at runtime. To con-
tain the arbitrariness of the clone functions and to
obtain defintie call address in execution time, a
sophisticated method is introduced to the load module,
which allows a solution of the problem of the function
pointer mentioned in the previous chapter. A function
pointer must be made to address any one of the cloned
function codes. Meanwhile, in getting a call address,
compatibility of an advance call and a sequential call
must be maintained.

In addition to codes of functions, the linking loader
generates tables like those shown in Fig. 2. All linked
functions potentially subject to advance call are
registered in these tables. The listings except the
leftmost one correspond to the respective home
memories of all the processor elements. For high-
speed access, a duplicate of the leftmost table might be
distributed to processor elements except for scheduling
pointers. Offsets of entries for the same function are
made to be same among all listings shown, letting a
function pointer be that offset address. The code
performs memory-indirect addressing of a sequential
call, referring to the table for its own processor
element. In an advance call, the code refers to the
leftmost table to determine which processor element to
demand before gaining a function code address in that
processor element from the corresponding table.

In the present demand/accept type computer,
function codes are loaded statically. Then, which
function codes including cloned function codes are
allocated to which home memories must be deter-
mined. At the present stage the code allocation is
specified by a person in "load conditioning file" outside
the logical C// program, which is fed to the linking
loader. The default specification is to make as many
clones as processor elements for the respective func-
tions and load clones of all functions to all processor
elements uniformly.

On the other hand, distribution of function
instances to cloned functions is done at runtime. The
scheduling strategy then might be round-robin, random,
processor load balancing, access cost balancing with
respect to external data and so on. Nevertheless, the
optimal strategy is beyond our knowledge and depends
on both machine parameters and program profiles.
Migration during the life of a function instance is not
assumed here since the transportation of its environ-

ment would be costly compared to load unbalance of
processor elements when the number of processor
element becomes large.

The optimization problem discussed in 3. (III)
remains outside of C// but is closely related to C//. It
includes the automatic generation of the optimal load
conditioning file and optimal spatial-temporal sched-
uling of function instances.

Initially the C// processor is implemented as a pre-
processor to C, but is later replaced by an experimental
cross-compiler since the former cannot cover all syntax
and generates a very heavy code for an advance call,
decreasing the efficiency of the demand/ accept control
mechanism. The target machine of the compiler is a
parallel computer based on the Motorola 68000 family
processor chips with the demand/accept control mecha-
nism emulated through the emulation trap.

The conventional technology using yacc and lex has
been sufficient for compiler realization. No syntactic
or lexical problems have arisen. As discussed before,
the environment of a function instance is a heap within
which stacks are stacked. As the transfer variables are
declared before advance calls, frames for parameter
passing can be prepared on the stack. Heap to heap
parameter passing can be realized by either data
copyingt or frame pointing passing. Our experimental
compiler adopts the latter.

6. Examples and Experience

According to the objective of this language, its
evaluation should be done both in adaptability ot
machines and in appropriateness for the applications
assumed in 2. The former is discussed in the foregoing
chapter. For the latter, there is noi appropriate meth-
od to achieve the above but, for empirical verification,
it is accomplished by many programming examples.
Though the empirical research does not in general lead
to general and quantitative conclusions, it may give
insight not only into the appropriateness of the
language for applications but also into its affinity to
human programmer’s ideas.

At first, a few tens of maze examples were made to
develop programming techniques and styles. One of
those programs is shown in Fig. 3 which is titled after
Son-Goku, a monkey hero in an old Chinese fairy tale
who can produce his copy from his hair. However, the
tale does not tell us whether he can do this recursively
or the context of the program does so by an advance

25

call of explore(). Function instances of explore()
return a report whether the branch leads to the goal,
which is received in the order of arrival through the
among-statement. The monitored result of the pro-
gram plotted on the maze pattern is shown in Fig. 4.

Qualitatively, the among-statement was used more
often than expected in small examples. Some program-
ming techniques were developed on the basis of that
statement including "repacking” and "dependence-graph
tracing." Using the among-statement also, diffusive
recursion can be converted into centralized control just
as recursion can be rewritten in a loop in a sequential
case. Nondeterministic selection has extended the
range of programming paradigm considerably. This re-
sult should be fed back to the performance improve-
ment of the compiled code and control mechanism.
On the other hand, the lock-statement was used on the
whole in a very simple context as expected. More
highly equipped synchronization primitive than the
atomic one was not required. Solutions to classical
exclusion and synchronization problems such as the
procducer-consumer, five philosophers and the like
were described using the lock-statement, but eractical
applications do not exist.

Evaluation by small toy programs is far from being
practical especially from the point of view of the factor
of human programmers. We selected a graduate stu-
dent who had a full knowledge in picture processing
and programming in language C but had not touched
the design and implementation of C//, and made him
write an actual picture analysis program in C// accord-
ing to the algorithm reported in [15] from the gradient
computation to the regulation of "space list."

All stages of the program belonged to type (A), in
which only the gradient computation by convoluting
differentiating filter was SIMD compatible through
which strip areas of the picture were passed to function
instances. At an other stage, the processing load was
divided into function instances for edge segments or
those for space-list segments. Length or structure
those segments were nonuniform. Respective stages
ran 3.1 to 3.9 times faster on the parallel computer
with four processor elements. Type (C) strategy was
also tried and two or three independent control flows
were possible in one half of processing stages to which
(A) was not used. Lock-statements were used in
simple ways in getting new list cells exclusively.

7. Conclusions

The design, specification, implementation and pro-

gramming experiences of a parallel programming lan-
guage C// are presented. The language is designed to
conform to the shared memory parallel computers cha-
racterized by the distributed "demand/accept” control
mechanism built into all processor elements. The first
objective of C// is to make those parallel computers
widely applicable. An optimal strategy for spatial-
temporal scheduling of function instances is an open
problem. Affinity to human programmer, is also con-
sidered in design and evaluated empirically by pro-
gramming experiments.

It is apparent from the language specifications that,
CJ// could be compiled in principle for other types of
parallel computers. However, if a target computer
operates based on a centralized control system or on
heavy communication channels, effective execution of
C// programs cannot be expected. In this sense, C// is
machine-oriented. But this does not mean that pro-
grams written in C// automatically become optimal with
to respect parallel computers with the demand/ accept
control. A programming language is only a mediator.
If a language yields any new styles of programming,
they should be fed back for the machine design.

On the other hand, parallel languages of various
types are possible for computers with the demand/
accept control other than the call type C//. For exam-
ple, a programming language based on message passing
between static processes could be realized by locked
communications through shared data between proces-
ses created initially and looping infinitely without
DELIVERIng. A programming language that adopts
a directed graph as its control flow model could be
realized by the runtime support of resident shells
distributed to processor elements that manage what to
fire by DEMAND next. Among those language
models, object-oriented one is very promising not only
in terms of programming paradigm but also space
scheduling since it binds everlasting data instances with
procedures which access them. The object-oriented
concept will be introduced to a second programming
language for parallel computers of the same type in the
near future.

Anyhow, the most urgent work to be done for pa-
rallel computers is gaining practical programming
experience.

REFERENCES

1. S. Oyanagi and N. Tanabe. Realization Techno-
logies for Massively Parallel Machines, J.IPS
Japan, Vol. 32, No. 4, pp. 365-376 (1991).

2. H. E. Bal, J. G. Steiner, and A. S. Tanenbaum.

26

10.

11.

12.

13:

15:

Programming Languages for Distributed Compu-
ting System, ACM Comput. Surv., Vol. 21, No. 3,
pp. 261-322 (1989).

Y. Hirotani, A. Fukuda, K. Murakami and S.
Tomita. The Parallel Programming Language
SERVE, LE.I.C.E. Technical Report Japan, Vol.
89, No. 410, pp. 1-9 (1990).

M. Hirabaru, K. Araki and I. Arita. Design and
Implementation of the High-Level Parallel Pro-
gramming Language Nano-2, Trans. on LE.LC.E.
Japan, Part D, Vol. J71-D, No. 8, pp. 1518-1524
(1988).

G. L. Steele Jr. and D. W. Hillis. Connection
Machine Lisp: Fine-Grained Parallel Symbolic-
Processing, Prc. of the 1986 ACM Conference on
Lisp and Functional Programming (1986).

A. Goto. Parallel Inference Machine Architec-
tures, J.IPS Japan, Vol. 32, No. 4, pp. 458-467
(1991).

T. Yoshinaga, M. Suzuki, T. Teraoka, H. Mogi
and T. Baba. A Node Processor for the A-NET
Multiprocessor and Its Execution Scheme, Joint
Symposium on Parallel Processing '91, pp. 189-
196 (1991).

A. Agarwal, B. H. Lim, D. Kranz and J. Kubia-
towicz. APRIL: A Processor Architecture for
Multiprocessing, Proc. 14th Ann. Symp. on Com-
puter Architecture, pp. 104-114 (1990).

R. Onai. Occam and Transputer, Kyouritsu Pub.
(1986).

M. Tomisawa. Demand/Accept Control Mecha-
nism and Hardware of a Parallel Computer, Joint
Symposium on Parallel Processing '91, pp. 221-
228 (1991).

E. C. Cooper. C Threads, Computer Science
Dept., Carnegie Mellon Univ., CMU-CS-88-154
(1988).

M. tomisawa, S. Igarashi, O. Atoda and N. Saito.
The Distributed Built-in Control Mechanism for
Procedure Flow Multiprocessors, Trans. LE.I.C.E.
Japan, Prat D, Vol. J71-D, No. &, pp. 1921-11930
(1980).

T. Nakagawa and M. Sugie. Automatic Load
Ballancing Features on PIM/c, LE.L.C.E. Tech-
nical Reports Japan, Vol. 91, No. 130, pp. 41-47
(1991).

T. Suzuki, M. Tomisawa, S. Igarashi and O.
Atoda. The Past Sharing/Multiple Future Data
and Caching Mechanism., IPS Japan SIG Notes,
Vol. 91, No. 64, pp. 177-184 (1991).

A. Ogasawara, M. Oide, O. Atoda, S. Igarashi
and N. Saito. A Functional Analog of Motion
Parallax in Machine Vision, Trans. LE.I.C.E. Ja-
pan, Part D-II, Vol. J74-D-I1, No. 7, pp. 933-944
(1991).

AUTHORS (from left to right)

y
- v S
el

;

{

- = 2 3
%% welm dgeoh d2h

Masaki Tomisawa. Education: Tokyo University of Agriculture and Technology, B.S., 1987, M.S,, 1989, D.Eng.
1992. Academic Appointments: Tokyo University of Agriculture and Technology, Assistant.

Hitoshi Tamura. Education: Tokyo University of Agriculture and Technology, B.S., 1990, first phase of doctoral
program completed, 1992. Industry positions: CASIO Computer Company, Ltd., 1992.

Hitoshi Hoshino. Education: Tokyo University of Agriculture and Technology, B.S., 1990, first phase of doctoral
program completed, 1992. Industry positions: Yokogawa Electric Corporation, 1992.

Satoshi Igarashi. Education: Tokyo University of Agriculture and Technology, B.S., 1981, M.S., 1983: D.Eng.
Academic appointments. Tokyo University of Agriculture and Technology, Assistant, 1983, Associate Professor, 1991.
Memberships: Information Processing Society, Japan Society of Instrument and Control Engineers.

Oichi Atoda. Education: Tokyo University, B.S., 1970, M.S., 1972, D.Eng., 1975. Academic appointments: Tokyo
University, Assistant, 1975, Lecturer; Tokyo University of Agriculture and Technology, Associate Professor, 1978,
Professor.

Nobuo Saito. Education: Tokyo University, B.S., 1955; D.Eng. Academic appointments: Tokyo University of
Agriculture and Technology, Professor, 1978. Industry positions: Hitachi, Lt. (Central Research Laboratories), 1955.
Research interests: ferrites, magnetic thin film, plated wire memory, magnetic bubble memory.

Copyright of Systems & Computers in Japan is the property of Wiley Periodicals, Inc.
2004 and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may
print, download, or email articles for individual use.

